The authors are indebted to Dr J. Pannetier and Y. Calage for helpful discussions and to Professor Hardy (Université de Poitiers) who allowed the data collection.

References

- ABRAHAMS, S. C. & BERNSTEIN, J. L. (1972). Mater. Res. Bull. 7, 715-720.
- BABEL, B., WALL, F. & HEGER, G. (1974). Z. Naturforsch. Teil B, 29, 139-148.
- BROSSET, C. (1938). Z. Anorg. Allg. Chem. 239, 301-304.
- BULOU, A. & NOUET, J. (1982). J. Phys. C, 15, 183-196.
- FEREY, G., LEBLANC, M., DE PAPE, R., PASSARET, M. & BOTHOREL-RAZAZI, M. (1975). J. Cryst. Growth, 29, 209-211.
- GLAZER, A. M. (1975). Acta Cryst. A31, 756-762.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HEGER, G., GELLER, R. & BABEL, D. (1971). Solid State Commun. 9, 335–340.

HIDAKA, M., WOOD, I. G., WANKLYN, B. M. & GARRARD, B. J. (1979). J. Phys. C, 12, 1799–1807.

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MENIL, F., TRESSAUD, A., SABATIER, R. & LE FLEM, G. (1977). Mater. Res. Bull. 12, 983–988.
- NOUET, J., PANNETIER, J. & FOURQUET, J. L. (1981). Acta Cryst. B37, 32–34.
- SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
- TEILLET, J., CALAGE, Y. & VARRET, F. (1982). J. Phys. Chem. Solids, 43(9), 863-869.
- TEILLET, J., FEREY, G., LEBLANC, M. & VARRET, F. (1978). Solid State Commun. 27, 1083–1084.
- TRESSAUD, A., GALY, J. & PORTIER, J. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 335-338.

Acta Cryst. (1985). C41, 660-663

Verfeinerung der Kristallstruktur des Ammoniumtriiodids, NH₄I₃*

VON K.-F. TEBBE UND B. FRECKMANN

Institut für Anorganische Chemie der Universität zu Köln, Greinstrasse 6, D-5000 Köln 41, Bundesrepublik Deutschland

UND M. HÖRNER, W. HILLER UND J. STRÄHLE

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Bundesrepublik Deutschland

(Eingegangen am 27. Dezember 1983; angenommen am 1. Januar 1985)

Abstract. $M_r = 398.75$, orthorhombic, Pnma, a =10.854 (3), b = 6.620 (1), c = 9.595 (3) Å, V =689.4 Å³, $D_r = 3.841 \text{ Mg m}^{-3}$, Z = 4, $\lambda(Mo K\alpha) =$ $0.71069 \text{ Å}, \ \mu(\text{Mo } K\alpha) = 13.34 \text{ mm}^{-1}, \ F(000) = 680,$ T = 293 K. The crystal structure has been confirmed and has been refined by full-matrix least squares for 597 observed reflections to $R_F = 0.038$ $[|F_{o}| \geq 4\sigma(F_{o})]$. In addition to former investigations, the H positions have been located. The extreme asymmetry of the triiodide ion $[I(1)-I(2) \ 3.114(2), I(2)-I(3)]$ 2.797 (2) Å, $\angle I(1)-I(2)-I(3)$ 178.55 (5)°] is mainly caused by asymmetrically distributed hydrogen bonds. The relation between the total length of the triiodide ion and its asymmetry is discussed.

Einleitung. Die Kristallstruktur des Ammoniumtriiodids konnte frühzeitig geklärt werden (Mooney, 1935). Im Vergleich mit dem isotypen Caesiumtriiodid CsI_3 (Runsink, Swen-Walstra & Migchelsen, 1972) liegt hier ein noch stärker asymmetrisches Triiodid-Ion vor. Inzwischen wurde die Struktur bereits mit dem Ziel verfeinert, die extreme Asymmetrie des Triiodid-Ions zu bestätigen (Cheesman & Finney, 1970). Als Ursache wurden die unsymmetrische Umgebung des Triiodid-Ions im Kristall genannt und im besonderen Wasserstoffbrücken zum Ammonium-Ion auf Grund der Iod-Stickstoff-Abstände vermutet (vgl. auch Yoshioka, Nakamura & Chihara, 1983), ohne dass letzteres infolge der erreichten Genauigkeit (R = 0,183unabhängige Reflexe, Filmmethoden, für 516 Weissenberg-Goniometer) direkt nachgewiesen werden konnte. Zu Klärung haben wir die Kristallstruktur des NH₄I₃ erneut verfeinert und die Begründung für die Verzerrung des hier vorliegenden Triiodid-Ions der Erwartung entsprechend in der Verteilung der Wasserstoffbrücken-Bindungen erkannt.

Experimentelles. Zunächst unbeabsichtigte Darstellung der Verbindung bei Versuchen zur Gewinnung von Polyiodiden der Ammin-Komplexe des Cobalts; Identifizierung und Charakterisierung über röntgenographische Pulver- und Einkristallmethoden;

© 1985 International Union of Crystallography.

^{*} Untersuchungen an Polyhalogeniden. 7. Teil 6: Tebbe (1983).

^{0108-2701/85/050660-04\$01.50}

würfelähnlicher, fast schwarzer Kristall, Kantenlängen $\lesssim 0,15$ mm; Gitterkonstanten aus den Winkeln von 12 Reflexen; P2₁ Syntex, Mo Ka-Strahlung, $\omega/2\theta$ -Abtastung, Basis-Scanbreite $\pm 1,0^{\circ}$, variable Scan-Geschwindigkeit $2.5 \le v \le 29.7^{\circ} \text{ min}^{-1}$; $2\theta \le 50^{\circ}$, $0 \le h \le 12, 0 \le k \le 7, 0 \le l \le 11, 666$ Reflexe. Messzeit 24 h; 1 Standardreflex, Änderung 0%. Polarisations- und Lorentz-Korrektur, empirische Absorptionskorrektur (ψ -Scan); bekannte Iodlagen (Cheesman & Finney, 1970) als Startmodell, Ermittlung der Stickstofflage mit Fourier-Methoden. Ver-['Least-squares' feinerung volle Matrix. 599 $|F_o| \geq 4\sigma(F_o)$ bis $R_{F} = 0,088$ bei isotropen Temperaturfaktoren, bis R = 0.071 bei anisotropen Temperaturfaktoren; Lokalisierung der H-Lagen in einer Differenz-Elektronendichte, Berücksichtigung bei den Verfeinerungen mit gemeinsamem isotropen Temperaturkoeffizienten und unter Festlegung der Geometrie des NH⁺₄-Ions auf die eines Tetraeders, frei verfeinerte mittlere Bindungslänge $\overline{d}(N-H) =$ 0,88 (4) Å; empirische Extinktionskorrektur nach F^* $= F(1-10^{-4}g|F|^{2}/\sin\theta)$ mit g = 0,00339 (7); starke Schädigung des Reflexes 020; Gewichtsschema w^{-1} $= \sigma^2(F)$, nach der Eliminierung von zwei offensichtlich messgeschädigten Reflexen 597 als beobachtet eingestufte Daten, $R_F = 0,038$, $wR_F = 0,045$; relative Verschiebungen im letzten Verfeinerungsschritt $|\Delta|/\sigma$ $< 10^{-3}$; $-1.39 \le \Delta \rho \le 1.78$ e Å⁻³ (diejenigen Restpeaks mit $\Delta \rho > 0.77$ e Å⁻³ liegen in der Nähe der Iodatome und können ihre Ursache in den bei der Verfeinerung nicht berücksichtigten anharmonischen Schwingungen haben); Datenreduktion und ein Teil der Verfeinerungen mit dem Programmsystem EXTL (Sparks, 1978) auf einem Eclipse-Rechner im Anorganisch-Chemischen Institut der Universität Münster, abschliessende Verfeinerungen mit SHELX76 (Sheldrick, 1976) auf einer Rechenanlage CDC Cyber 72/76M im Rechenzentrum der Universität zu Köln; Berechnung der strukturgeometrischen Daten mit ORFFE3 (Busing, Martin, Levy, Brown, Johnson & Thiessen, 1977); Atomformfaktoren für die neutralen Atome H, N, I und Dispersionskorrekturen aus den International Tables for X-ray Crystallography (1974).

Diskussion. Die Lageparameter sind in Tabelle 1 aufgelistet. Fig. 1 enthält die wichtigen Abstände und Bindungswinkel.[†]

Die hier beschriebene Analyse bestätigt wesentliche Details der bisher vorliegenden, aber weniger genauen

Tabelle 1. NH₄I₃: Atomlagen und isotrope Temperaturkoeffizienten (Standardabweichung)

661

Die über $T = \exp(-8\pi^2 U_{\rm iso} \sin^2 \theta / \lambda^2)$ definierten thermischen Parameter $U_{\rm iso}(\dot{A}^2)$ sind (ausser für H) der abschliessenden isotropen Verfeinerung entnommen worden.

	Lage	x	у	Z	$U_{\rm iso}$
1(1)	4(c) m	0,1566 (1)	1	0,3468 (1)	0.035 (1)
1(2)	4(c) m	0,3813 (1)	i	0,5485 (1)	0.032(1)
I(3)	4(c) m	0,5790 (1)	1 de la companya de l	0,7354 (1)	0.039 (1)
N	4(c) m	0,336 (1)	ļ	0.026 (1)	0.048 (6)
H(1)	4(c) m	0,407 (3)	į	0.071(4)	-, (•)
H(2)	4(c) m	0,275 (4)	ļ	0.086 (4)	0.10(5)
H(3)	8(d) 1	0,331 (2)	0,142 (3)	-0.027 (2)	-, (-)

Fig. 1. NH_4I_3 . Kristallstruktur mit dem Bezeichnungsschema für die Atome, wichtigen Abständen in Å und Bindungswinkeln in Grad (Standardabweichung), den kurzen Kontakten innerhalb der Iod-Teilstruktur und den Wasserstoffbrücken-Bindungen. (a) Schnitt durch $y = \frac{1}{4}$. (b) Schnitt durch $x \simeq \frac{1}{6}$.

Strukturbestimmungen (Mooney, 1935; Cheesman & Finney, 1970) wie die fast ausschliessliche Besetzung von Lagen der Punktsymmetrie m, die mit d(I-I) = 2,797 (2), 3,114 (2) Å extreme, nur noch vom l-Methylcytosinium triiodid (Rossi, Marzilli & Kistenmacher, 1978) übertroffene Asymmetrie des Triiodid-Ions (vgl. Tabelle 2), die geringe Anisotropie der harmonisch behandelten thermischen Schwingungen der schwereren Atome und den schichtartigen Aufbau aus kationisch und anionisch gemischten Netzen mit parkettartiger Triiodid-Teilstruktur (Fig. 1a) analog dem isotypen Caesiumtriiodid CsI₃. Die durch kurze

[†] Listen mit den Koeffizienten der anisotropen Temperaturfaktoren und den Strukturfaktoren (K-FT & BF, Köln) sind neben den Ergebnissen einer weiteren, allerdings nicht zur Lokalisierung der H-Lagen führenden Untersuchung (MH, WH & JS, Tübingen) bei der British Library Lending Division als Supplementary Publication No. SUP 39998 (19 pp.) hinterlegt worden. Kopien sind erhältlich durch The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Tabelle 2. NH₄I₃: Übersicht über Strukturen mit stark unsymmetrischen Triiodid-Ionen

Die Abstände sind in Å, die Winkel in Grad angegeben.

Literatur: (a) diese Arbeit; (b) Runsink et al. (1972); (c) Heinlein & Tebbe (1981); (d) Rossi, Marzilli & Kistenmacher (1978); (e) Düker, Freckmann, Niebuhr, Plewa & Tebbe (1979); (f) Lang & Tebbe (1983); (g) Korte, Krebs, van Kralingen, Marcelis & Reedijk (1981) (1,2-dmiz = 1,2-dimethylimidazole).

interionische Abstände $d(I \cdots I) = 3,881$ (2), 4,096 (2) Å längs [100] zu gewinkelten Ketten vernetzten Anionen sind allerdings im Gegensatz zu früheren Angaben (Cheesman & Finney, 1970) nicht gestreckt, sondern liegen mit $\varphi(I-I-I) = 178,55$ (5)° in schwach gewinkelter Form vor.

Das Ammoniumion NH⁺₄ rotiert nicht, sondern ist durch Wasserstoffbrücken festgelegt. Das Triiodid-Ion I_3^- nähert sich wegen seiner starken Asymmetrie der Beschreibung [I-I···I⁻]. Während die molekülartige Seite I(2), I(3) an der Knüpfung der Wasserstoffbrücken nicht beteiligt ist, ergänzt das Iodid-ähnlichere Iodatom I(1) seine Koordination etwas unregelmässig unter Ausbildung von vier weiteren Kontakten mit Wasserstoffbrücken-Charakter $[\vec{d}(\vec{I}\cdots\vec{H})=\hat{2},\hat{8}\hat{2}(\vec{3}),$ 2,81 (4), 2 × 2,87 (2) Å; $d(I \cdots N) = 3,69(1), 3,64(1),$ $2 \times 3,731$ (5) Å; $\varphi(N-H\cdots I) = 167$ (3), 158 (4), $2 \times$ 168 (2)°]. Diese verketten das Atom I(1) innerhalb der Spiegelebene längs [100] Mäander-artig über H(1), H(2), zwischen aufeinander folgenden Schichten dagegen längs [010] zick-zack-förmig über H(3) mit dem Ammonium-Ion (Fig. 1). Neben den beiden Kontaktabständen innerhalb der Iod-Teilstruktur, die hier deutlich kürzer sind als die entsprechenden Werte für Caesiumtriiodid (Runsink et al., 1972), darf die einseitige Beanspruchung des Triiodid-Ions durch die Wasserstoffbrücken als Ursache der starken Asymmetrie angesehen werden. Die restlichen Kontakte $d(I \cdots I) \ge 4.30$ Å und $d(I \cdots H) \ge 3.46$ Å deuten auf keine weiteren besonderen Wechselwirkungen zwischen den Schichten und den Ketten innerhalb der Schichten hin.

Als Gesamtlänge des Triiodid-Ions lässt sich d(I-I) = 5,84 (2) Å in der Regel bei den linearen symmetrischen und auch noch bei den schwächer, aber nicht mehr bei den stärker verzerrten Formen beobachten (Tabelle 2), die bei einseitiger Übernahme von Donor- und Acceptor-Funktionen durch ein terminales

Fig. 2. NH₄I₃. Beziehung zwischen der Summe $\sum = d_2 + d_1$ und der Differenz $\Delta = d_2 - d_1$ (jeweils in Å) der Bindungslängen in stark unsymmetrischen Triiodid-Ionen ($\ge = 5,816 + 0,303\Delta$, Korrelationskoeffizient r = 0,85).

Iod-Atom und im besonderen bei Einbindung der Triiodid-Ionen in kettenförmige Verbände $\frac{1}{\omega}(I_3^-)$ vorliegen (Tebbe, 1977; Tebbe & Plewa, 1982). Die Gesamtlänge des Triiodid-Ions steigt mit seiner Asymmetrie an, wie die Korrelation der Summe der beiden Bindungsabstände mit ihrer Differenz verdeutlicht (Fig. 2) und wie sich mit der Konstanz der Summe der Bindungsordnungen $n_1 + n_2 = 1$ (z.B. mit $d_i = d_0 - algn_i$; Pauling, 1947) für das in grober Näherung als isoliert betrachtete Triiodid-Ion begründen und genauer beschreiben lässt (vgl. auch Hanschmann, 1981, und die dort zitierte Literatur).

Die Messung der Intensitäten erfolgte im Institut für Anorganische Chemie der Universität Bielefeld. Die Rechnungen wurden teilweise im Anorganisch-Chemischen Institut der Universität Münster durchgeführt. Wir danken Herrn Dr S. Pohl für die Durchführung der Messung und Herrn Prof. Dr B. Krebs für die Bereitstellung der Messzeit in Bielefeld und der Rechenzeit in Münster.

Literatur

BUSING, W. R., MARTIN, K. O., LEVY, H. A., BROWN, G. M., JOHNSON, C. K. & THIESSEN, W. E. (1977). ORFFE3. Oak Ridge National Laboratory, Tennessee, V. St. A.

CHEESMAN, G. H. & FINNEY, A. J. T. (1970). Acta Cryst. B26, 904-906.

- DÜKER, H.-U., FRECKMANN, B., NIEBUHR, H., PLEWA, M. & TEBBE, K.-F. (1979). Z. Kristallogr. 149, 131–132.
- HANSCHMANN, G. (1981). React. Kinet. Catal. Lett. 18, 13-16.
- HEINLEIN, TH. & TEBBE, K.-F. (1981). Z. Kristallogr. 156, 55-57.
- International Tables for X-ray Crystallography (1974). Bd. IV. Birmingham: Kynoch Press. (Gegenwertiger Verteiler D. Reidel, Dordrecht.)
- Korte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. & Reedijk, J. (1981). *Inorg. Chim. Acta*, **52**, 61–67.
- LANG, TH. & TEBBE, K.-F. (1983). Abstr. 8. Eur. Cryst. Meet. Liège, 2b.49-P, S. 179.
- MOONEY, R. C. L. (1935). Z. Kristallogr. 90, 143-150.

PAULING, L. (1947). J.Am. Chem. Soc. 69, 542-553.

- Rossi, M., MARZILLI, L. G. & KISTENMACHER, TH. (1978). Acta Cryst. B34, 2030–2033.
- RUNSINK, J., SWEN-WALSTRA, S. & MIGCHELSEN, T. (1972). Acta Cryst. B28, 1331–1335.
- SHELDRICK, G. M. (1976). SHELX76. A Program for Crystal Structure Determination. Univ. Cambridge, England, unveröffentlicht.
- SPARKS, R. A. (1978). Computing in Crystallography, herausgebeben von H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, S. 52–63. Delft Univ. Press.
- TEBBE, K.-F. (1977). Homoatomic Rings, Chains and Macromolecules of Main-Group Elements, herausgegeben von A. L. RHEINGOLD, S. 551–606. Amsterdam: Elsevier.
- Тевве, К.-F. (1983). Acta Cryst. С39, 154–159.
- TEBBE, K.-F. & PLEWA, M. (1982). Z. Anorg. Allg. Chem. 489, 111-125.
- YOSHIOKA, Y., NAKAMURA, N. & CHIHARA, H. (1983). J. Chem. Soc. Faraday Trans. 2, **79**, 497–504.

Acta Cryst. (1985). C41, 663-665

Structure of Iron Diniobium Hexaoxide, FeNb₂O₆: An Example of Metal-Disordered Trirutile Structure

BY A. ARUGA, E. TOKIZAKI, I. NAKAI AND Y. SUGITANI

Department of Chemistry, The University of Tsukuba, Ibaraki 305, Japan

(Received 15 November 1984; accepted 2 January 1985)

Abstract. $M_r = 337.7$, tetragonal, $P\overline{4}2_1m$, a = 4.7270 (5), c = 9.216 (2) Å, V = 205.93 (5) Å³, Z = 2, $D_m = 5.39$, $D_x = 5.44$ Mg m⁻³, λ (Mo $K\alpha_1$) = 0.70926 Å, μ (Mo $K\alpha_1$) = 8.79 mm⁻¹, F(000) = 312, room temperature. R = 0.033, wR = 0.029 for 476 reflections with $|F| > 3\sigma_F$. A superstructure of the rutile structure. The single crystal was synthesized by the floating-zone method. Metal sites are statistically occupied by disordered Fe and Nb atoms located in the octahedral interstices in the h.c.p. arrangement of the O atoms. The structure consists of chains of MO_6 octahedra, in which each octahedron shares a pair of opposite edges.

Introduction. FeNb₂O₆ is known to have two types of crystal structures. One is found in a structure of ferrocolumbite (Fe,Mn)(Nb,Ta)₂O₆ known as having the columbite (or niobite) structure with orthorhombic symmetry. The other is a high-temperature modification of ferrocolumbite, produced in a reducing atmosphere (Turnock, 1966). This compound was once reported as a mineral, mossite, but the mineral name is currently discredited (Dunn, Gaines & Kristiansen, 1979). The structure of this phase has been believed to belong to the trirutile (or tapiolite) structure with tetragonal symmetry. Distributions of the metal ions in both of the structures have been considered as 'ordered'. Recently,

however, rutile structures having a statistical cation distribution were reported for $(Fe_{0.5}Ta_{0.5})O_2$ and $(Fe_{0.45}Nb_{0.53})O_2$ (Langhof, Weitzel, Wölfel & Scharf, 1980). In this paper, the crystal structure of tetragonal FeNb₂O₆, which may correspond to so-called mossite, is reported. Also discussed is whether the Fe and Nb atoms in metal sites are disordered or ordered.

Experimental. Single crystals of FeNb₂O₆ were grown by the floating-zone technique. A stoichiometric powder mixture of Fe₂O₃ (99·9% pure) and Nb₂O₅ (99·99% pure) was sintered under an atmosphere of CO₂-H₂ [log(CO₂/H₂) = -1] at 1123 K for 10 h. The FeNb₂O₆ obtained was then ground into a fine powder and pressed under a hydrostatic pressure of 400 kg cm⁻² to form a rod. A single crystal (90 × 6 mmØ) of FeNb₂O₆ was grown from the rod by the floating-zone apparatus of an infrared-radiation convergence type in the atmosphere log(CO₂/H₂) = 2, at a growth rate of 5 mm h⁻¹.

Electron microprobe analysis gave Fe, 15.75; Nb, 53.21; O, 27.42; total, 96.38 wt%. The corresponding chemical formula assumed as Fe + Nb = 3 is $Fe_{0.99}$ - Nb_{2.01}O_{6.02}, and was simplified to $FeNb_2O_6$.

Density measured by Berman balance. Crystal of ellipsoid shape $(0.150 \ensuremath{\varnothing} \times 0.175 \text{ mm})$ elongated parallel to the *c* axis. Rigaku AFC-5 automated four-circle

© 1985 International Union of Crystallography